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Abstract. This paper describes the procedure of determining the parameters of the approximating function of the sur-

face using a distribution of special value. From a practical point of view, an important issue is to determine the covar-

iance matrix of the estimated parameters. Interval estimation was carried out and a methodology to obtain an optimal 

equation of approximating surface was presented. The main emphasis was given to the elimination of these parameters 

functions that generate unnecessary disturbance. The results obtained using the approximate decomposition SVD were 

compared with those obtained by a classical method of least squares. They have been used a variety of software, in-

cluding software written by author, also packages Matlab and Statistica. The main purpose of discussion is to solve 

sample tasks for better understanding and expand the use of decomposition SVD in geodetic issues. 
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Introduction  

Approximation is a representation of the function ( )xfy =  using simpler, belonging to a certain class of functions 

( )xFy = . In surveying issues often known only finite (discrete) set of values of the function and purpose of ap-

proximation is forecasting value, including the assessment of the accuracy of the forecast (Hanus et al. 2014; 

Jasińska 2012). Function approximating (zooming) is looking mostly in a family functions, for example, among pol-

ynomials and exponential functions (Korn, G. A., Korn, T. M. 1983). Bringing one function by another always re-

sults in the appearance of inaccuracies approximation. Depending on the method of measuring inaccuracy of the 

approximation distinguishes: 

– Uniform approximation – it is assumed that the functions ( )xfy = and ( )xFy =  are defined and continuous in 

the range of [ ]ba ; . The accuracy of approximation is measured by Chebyshev’s standard:   

( ) )(sup xFxfFf
bxa

−=−

≤≤

; 

– Medium-square continuous approximation-function ( )xfy =  is defined and continuous in the range of [ ]ba ; . 

The accuracy of approximation is measured by: 

( ) ( )
2

( ) ,

b

a

f F p x f x F x dx − = − ∫  

where ( )xp  – non-negative, the actual weighting function. 

– Medium-square discreet approximation – known function values can be represented by the table: 
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The accuracy of approximation is measured by: 
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The function approximating is selected most often in the form of generalized polynomial 
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functions, , m + 1 dimensional linear space. In this case, the task of approximation is reduced to the determination of 

the .,...,,

10 m
aaa  As a basis function, most often monomial or trigonometric functions are chosen. According to 

Weierstrassa claims, for every function ( )xfy =  defined and continuous on the closed and bounded stretch 

[ ]ba ;  there is a polynomial 
m

mm
xaxaxaaW ++++= ...,

2

210
, that brings uniformly function ( )xfy =  section 

[ ]ba ; , and for every function ( )xfy =  defined and continuous on R and periodic of period 2π, there is 

a polynomial trigonometric ( ) )sin()cos(
2 1

0
kxbkxa

a
xS

k

m

k
km ∑ ++=

=

, which brings uniformly function ( )xfy = . 

In the case where approximation is performed to estimate (e.g., displacement values at the time), then it plays 

an important role reliability of forecast. The accuracy of predictions determined by the rules of propagation of covar-

iance is usually highest in the case of the simplest functions approximating, unfortunately not always the reliability 

of such forecasts can be considered sufficient (Preweda 2013). The essence undertaken subject is the application of 

discrete regularization to minimize the impact of noise occurring in the observations. Thanks to this operation, ap-

proximating functions can be made simpler to increase the credibility of forecasts. Application of SVD decomposi-

tion (Gloub, Reinsch 1970) is known primarily from solving poorly conditioned systems of equations or, for exam-

ple, image compression. In this work demonstrates the possibility of using this distribution for the prediction based 

on the “noisy” data input. Of course, there are other mitigating “noise”, such as estimation methods strong. In this 

case, we focus exclusively on the regularization of the task in terms of prediction, although the numerical point of 

view, these tasks can even be well conditioned. 

Discrete regularization task of approximation using SVD 

Approximation of curves and surfaces is reduced to solution of the problem of least squares, which can be stored in 

the known matrix form: 

 ,= ←Ax L P  (1) 

where A – the coefficients matrix; L – the free words vector; P – matrix of weights; x – vector of unknowns. 

According to the method of least squares unknowns estimator 
x̂

 is determined from the relationship 

 ( )
1

T T
ˆ .

−

=x A PA A PL  (2) 

Let there be a function ( )
iii

dzyxf =,  (see Table 1). 

 

Table 1. Function ( )
iii

dzyxf =,  

 

For simplicity, suppose that the observations yi have equal accuracy (P = I ). We assume that we approximate 

quadratic surface: 

 2 2

0 1 2 3 4 5
for 1...28.

i i i i i i i
dz a a x a y a x a y a x y i= + + + + + =  (3) 

i
x  0.7 0.0 0.6 0.1 10.0 10.7 10.5 10.1 20.7 20.6 20.7 20.7 30.3 30.8 

i
y  0.0 10.5 20.0 30.2 0.0 10.5 20.2 30.2 0.1 10.2 20.7 30.1 0.1 10.3 

i
dz  –21.9 –12.2 –27.0 –31.3 –17.2 –17.6 –30.8 –43.2 –1.4 –15.9 –36.6 –74.3 –33.5 –35.2 

i
x  30.0 30.1 40.6 40.7 40.8 40.5 50.7 50.1 50.2 50.2 50.3 50.2 50.7 50.7 

i
y  20.0 30.1 0.3 10.5 20.7 30.2 0.2 10.3 20.4 30.3 0.6 10.6 20.6 30.2 

i
dz  –52.0 –64.0 0.5 –19.6 –61.7 –84.5 –9.2 –19.3 –70.1 –82.3 14.7 –33.7 –66.2 –98.9 
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The solution of the above system is burdened inaccuracy arising due to inaccuracy of observations and numeri-

cal calculations. In terms of forecast, it will also be subject to uncertainty arising from the adoption of a specific 

function approximating which is determined because of the preliminary analysis, but in practice it is never recog-

nized until the end. Input errors have of importance in the approximate area of the second degree (Preweda 1993; 

Jasińska et al. 2003; Jasińska, Preweda 2004, 2012).  

In other cases, relative small data deficits substantially affect estimated uncertainties vector, resulting in rela-

tively large relative changes of the solution. This sensitivity sought solutions to changes in the parameters is referred 

to as a conditioning assignment. For the evaluation of the effect of disturbance data disorders solution using various 

numerical values hereinafter conditions indicators (Wilkinson 1965; Lawson, Hanson 1965) Based on years of the 

author's experience it may be said that the use of not one, but several basic indicators allow proper assessment of 

conditions of the task and take the appropriate decision on how to solve it. Another problem is the issue of the fore-

cast based on the function approximating. In this case, too, you can be successfully applied regularization discreet, 

even despite the good conditions of the task, particularly when the forecast must be based on substantial extrapola-

tion. In the analysis of the problem in terms of numerical indicators are helpful Turing’s )N(and)M( ZZ  and Von 

Neuman’a-Goldstin’s )P(Z . These ratios are determined from the relationship: 

 
1 1
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where: ( )ija=Z  – the square matrix n n× ; ( )ijα=
−1

Z  – the inverse matrix Z; 
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max min
,  – the largest and the smallest eigenvalue of the matrix Z. 

For a well-conditioned matrix, appropriate indicators should be of the order: 

 opt opt optM( ) log , N( ) , P( ) .n n n n= = =Z Z Z  

Obtaining such indicators of conditions in practice almost impossible, and the possibility of comparison with 

“standard” is very valuable to take appropriate action in the search for optimal estimators. From a practical point of 

view, it should be noted that between indicators of conditions occur relationships: 

)M()N(
)M(

2
ZZ

Z
≤≤

n

  (for 10≥n ); 

)M()P(
)M(

ZZ
Z

n

n

≤≤ . 

Let's check conditioning matrix for the matrix obtained based on (3): 


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

=

68011788328,4487550545,1264822185574,30291934,6480502615,56412450,8800

487550545,12617101264,4868011788328,40259658,5410291934,64810043,6500

64822185574,368011788328,435366648286,20502615,564101443266,2932731,6100

0291934,6480259658,5410502615,56410043,650012450,8800428,1000

0502615,5640291934,648101443266,2912450,880032731,6100812,3000

12450,880010043,650032731,6100428,1000812,30000000,28

Z ; 

M( ) 194213628;

N( ) 6306873;

P( ) 38746198.

=

=

=

Z

Z

Z

 

Optimal values are: 6)45.239. === optoptopt P()N(,4)M( ZZZ . The matrix AA
T  is not well condi-

tioned in terms designate the reverse, however, you can solve the task using a least squares method:  
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P 0.68 P 0.90

–16.51701 6.902 11.851

0.00040 0.435 0.747

0.17351 0.645 1.107
x̂

0.00698 0.007 0.013

–0.02096 0.019 0.032

–0.05417 0.009 0.016

= =

± ± 
 ± ± 
 ± ±

=  
± ± 

 ± ±
 

± ±  

  

The standard deviations of the model parameters determined at a probability level of P = 0.68 and a probability 

level of P = 0.90 (based on interval estimation based on the distribution t- Student). Quadratic surface model is 

shown in Figure 1. 

 

 

Fig. 1. Approximation quadratic surface 

Verification of statistical hypotheses about the importance of the parameters shows that the probability level 

P = 0.68, statistically significant only three parameters ( 540 ,, aaa ). Based on approximation of the model surface: 

 2

0 4 5
for 1...28,

i i i i
dz a a y a x y i= + + =  (5) 

the following results were obtained: 

           P 0.68 P 0.90

–9.59372 2.895 4.945

x̂ –0.02918 0.007 0.013 .

–0.03877 0.006 0.009

= =

± ± 
 = ± ± 
 ± ± 

 

All parameters of the model are statistically significant. Let’s see yet approximation plane of model: 

 
0 1 2

for 1...28;
i i i

dz a a x a y i= + + =  (6) 

P 0.68 P 0.90

6.83031 6.678 11.407

x̂ –0.45317 0.159 0.271

–2.02649 0.257 0.438

= =

± ± 
 = ± ± 
 ± ± 

. 
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Approximation of the model shown in Figure 2. 

 

 

Fig. 2. Approximation of surface per equation: yaxaadz
210

++=  

The purpose of discussion is a regularization of the task. The basis of regularization will be a discrete distribution 

coefficient matrix approximation equations singular value. Because of this distribution, we receive practically always a 

positive singular value the angle of the value may be near zero. The number of these almost zero singular value de-

pends on the type, the accuracy of measurement and accuracy of calculation. Some parameters of the model can be 

very sensitive to the type of disorder input. The task can be solved correctly provided knowledge of the actual order of 

the matrix coefficients. Suppose that the matrix A is not a regular matrix. If the rank of this matrix is known a'priori and 

should be p, then the correct solution simply equate (n-p), the smallest singular value to zero. Matrix 

( )
n

σ,...,σ,σdiag
21

=S  rank ( ) ur =S  we replace by matrix 
α
S  which is: ( ).,0,0,...σ,,...σ,σdiag

21α p
=S  Rank of this 

matrix p called pseudo-rank of the matrix A. Number α satisfying the relationship 

npp
α σ...σσ...σσ

1+21
≥≥≥≥≥≥≥  referred to as the parameter of regularization.  

Pseudo-inverse of regularized matrix 
α

T

αα
dAAVSUA +==  is expressed by the formula 

T

αα
USVA
++

= ,  

Estimated uncertainties while the vector is determined from the relationship: 

 
α α
ˆ .

+

=x A L  (7) 

 

Let us determine the singular values of the matrix A for the Eq. (3):  

( )2.05321.85,1320.77,1053817.217333923.04377191297.5diag ,,,=S  

Based on the value analysis 
ix
x

i

ˆ/ˆσ  assume pseudo rank of the matrix 5)( =Ap .  

Hecne ( )0321.85,1320.77,1053817.217333923.04377191297.5diag
α

,,,=S , while 
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α

–0.06886

 –0.70488

–0.71543
ˆ

 0.01443

–0.00883

 –0.04125

α

+

 
 
 
 

= =  
 
 
 
  

x A L . 

It should be noted that the thus obtained unknowns do not meet the condition of the least squares method, due to 

regularization of the task. It can be shown that the sum of deviations calculated as LxAv −= αα
ˆˆ  will be different 

from zero. The final solution must be corrected by a factor of systematic resulting from regularization. To eliminate 

this factor, in this task simply subtracted from the estimated parameter 
1

ˆ
α0

xa =  the average value calculated from the 

vector 
α
v̂ . Model parameters after eliminating systematic factor resulting from regularization tasks are:  

P 0.68 P 0.90

 –1.27268 0.028 0.047

 –0.70488 0.019 0.033

–0.71543 0.118 0.202
x̂

 0.01443 0.007 0.013

–0.00883 0.020 0.034

 –0.04125 0.008 0.014

= =

± ± 
 ± ± 
 ± ±

=  
± ± 

 ± ±
 

± ±  

. 

This model is illustrated in Figure 3. 

 

 

Fig. 3. Approximation of the area quadratic after regularization 

Table 2 summarizes the results of four prediction models. 

Table. 2. The forecast by 4 models of approximation (x = 15, y = 15) 

Model R2 dz [mm] mz [mm] 

iiiiiii yxayaxayaxaadz 5

2

4

2

3210 +++++=  0.96 –29.2 3.6 

iiii yxayaadz 5

2

40 ++=  0.94 –24.9 2.2 

iii
yaxaadz 210 ++=  0.74 –30.4 3.6 

iiiiiii yxayaxayaxaadz 5

2

4

2

3210 +++++= + regularization 0.96 –30.6 3.9 
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Conclusions  

In practice, you can only roughly determine the correct row of the matrix coefficients of the approximation equations. 

The disorder of satisfies dA≤idσ , while the estimate disorder regularized matrix 
α

A  can be written as: 

αεσε
α

+≤+≤
+1pdA . Parameter dA=ε  determines the level of disturbance matrix A. Since the pseudo-inverse 

of the regularized +

α
A  should fulfil the Lipshitz condition of continuity, therefore, the inequality 1<

+

α
AA d must 

be true. It seems that 
r

dAA
σ

αε

α

+
≤+ , wherein 

r
σ  is the smallest, different from zero, singular value does not 

impaired matrix A.  If we choose the regularization parameter, so that was fulfilled relationship εα ≥ , then will take 

place the equality of rows of the regularized matrix 
α

A  and matrix A. The upper value of parameter estimation α  

can be written as εσα −<
r

, from with the result that εσαε −≤≤
r

. With this relationship, can be concluded that 

a necessary condition for its fulfilment is that the relationship occurred 
r

σε <2 . The paper arbitrarily assumed a rank 

of coefficient matrix as one less than the actual rank, to demonstrate the possibility of an intermediate solution of the 

problem, for example, between the polynomial and n (n-1) degree. The solution is based on the regularization of 

discrete suited much better to predict than based on reducing or increasing the degree compile function approximating. 

This solution is also indispensable in case of an actual fault matrix of coefficients of approximation equations, resulting 

from a defect or the defect numeric. 
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