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Abstract. Water resources managers can benefit from accurate prediction of the availability of groundwater. Ground 
water is a major source of water in Turkey for irrigation, water supply and industrial uses. The ground water level 
fluctuations depend on several factors such as rainfall, temperature, pumping etc.  In this study, Hatay Amik Plain, 
Kumlu region was evaluated using Autoregressive (AR) and Support Vektor Machines (SVMs) methods.  The monthly 
groundwater level was used the previous years data belonging to the Kumlu region.    
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Introduction  

Total water consumption with population increase is continuously increasing. In order to meet the need for water, over-

shoots made from underground water are causing significant falls in groundwater level. Prediction of groundwater 

level is important for effective planning and sustainable groundwater management. Application of SVMs in developing 

a reliable groundwater level fluctuation forecasting system to generate trend forecasts is being discussed.  
SVMs have been recently introduced relatively new statistical learning technique. Due to its strong theoretical 

statistical framework, SVM has proved to be much more robust in several fields, especially for noise mixed data, than 

the local model which utilizes traditional chaotic techniques (Xinying et al. 2004). Jin et al. (2009) proposed SVM 

based dynamic prediction of groundwater level. Mohsen et al. (2010) made an attempt with SVMs and ANNs for 

predicting transient groundwater levels in a complex groundwater system under variable pumping and weather 

conditions. Heesung et al. (2011) developed two nonlinear time-series models for predicting the groundwater level 

(GWL) fluctuations using ANNs and SVMs.  

In this study, groundwater level measured in the previous years belonging to the Kumlu region was performed 

using Autoregressive (AR) and Support Vektor Machines (SVMs) methods.  Monthly total rainfall and monthly 

average temperature data measured at the Antakya Meteorological Station and the static underground water level 

monthly measurement data of the observation well No. 474 belonging to DSI in Kumlu region between 2000 and 2015 

were used. The DSI observation well is located at 36.21981 latitude and 36.29114 longitude, with a depth.  

Methodology 

Autoregressive (AR) Model: 

The autoregressive (AR) model of an order p can be written as AR(p) and is defined as 

 yt = φ1 yt-1 + φ2 yt-2………+ φt-p yt-p + zt (1) 

where: zt is a purely random process; and E(zt) = 0, Var(zt) = σz
2 . The parameters φ1 . , ... , φp are called the AR 

coefficients. The name “autoregressive” comes from the fact that Xt is regressed on the it’s past values. In this paper, 

model AR1 has been applied to groundwater level data by using MATLAB. The Yule-Walker equation was used to 

estimate AR coefficients. 

Support Vector Machines (SVMs) 

Support Vector Regression (SVR) is a regression method based on Support Vector Machines (SVM) (Vapnik 1995; 

Schölkopf, Smola 2002). The idea behind SVM is to find a hyperplane that separates two classes in the transformed 

feature (input) space with a maximum distance. SVR aims to find the optimal regression hyperplane, that all training 

samples lie within an ε-margin around it and is also as flat as possible (Schölkopf, Smola 2002).  A support vector 

machine is an dimensional vector that divides data into two optimal categories on Hyperplane. SVM models are closely 
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related to artificial neural networks and using a sigmoid kernel function; has a two-layer, forward-feed artificial neural 

network (Haykin 1998). An interesting feature of SVM is; by minimizing the average error rate on the data set from 

the empirical risk minimization principle derived, statistical learning. In the theory of structural risk minimization. The 

basics of SVM One of the assumptions is that all the samples in the training set are independent and similar (Song 

et al. 2012). 

 

 

Fig. 1. Network architecture of SVM. Adapted from (Chen and Yu 2007) 

Network architecture of SVM, adapted from (Chen and Yu (2007) is shown in Fig. 1.  SVM differs from the other 

classification methods significantly. Its intent is to create an optimal separating hyperplane between two classes to 

minimize the generalization error and thereby maximize the margin. SVM is an approximate implementation of 

structural risk minimization approach. Structural risk minimization method described that the error rate of learning 

machine on test data is bounded by the sum of training error rate and a term that based on Vapnik–Chervonenkis 

dimension (Haykin 1998). 

Results 

In this study, the monthly groundwater level data measured in Kumlu, DSI data and the monthly total rainfall and 

monthly average temperature data measured at the Antakya Meteorological Station were used to determine 

groundwater level. Modeling was carried out using 192 data of monthly ground water level, monthly total precipitation 

and monthly average temperature values measured for 16 years between 2000 and 2015.  

AR model results  

AR1 model was employed for groundwater level to offer a comparison to the bagging-SVM forecast model.  The 

distribution and scatter graphs are shown in Figure 2 and Figure 3.   

 

Fig. 2. Measurement and AR1 distribution chart for underground water level for test data 
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Fig. 3. Measurement and AR1 model scatter graph for ground water level for test data 

AR1 model results show that the correlation coefficient is high and the groundwater level estimate is close to the 

actual values shown in Figure 2. The correlation coefficient R = 0.837 was obtained as seen the Figure 3. 

SVM Model Results 

In the support vector machines (SVM) model, 150 data of 192 were used training and 42 data were analyzed for the 

test. Monthly Mean Precipitation (MP), Monthly Average Temperature (MT), Monthly Ground Water Level (GWL+1) 

were used for the Ground Water Level Estimates. Estimated testing results are shown in Fig. 4  and 5 as, respectively, 

the distribution and scatter plots. 

 

 

Fig. 5. Scatter graph of SVM and observed values  
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The SVM estimated values were observed in the test phase and gave worst results than the AR values. The 

correlation coefficient R = 0.718 was obtained as seen the Figure 5.  SVM model results data are close to the actual 

values shown in Figure 4.   

General Evaluation 

Using monthly mean precipitation (MP), monthly average temperature (MT), monthly groundwater level (GWL+1) 

data from Kumlu region, correlation coefficient (R), the lowest mean squared error (MSE) and the total squared error 

(MAE) are calculated for performance evaluation of AR and SVM models. Results are used to compare the 

performance of model prediction and the observation data. Comparing parameters of MSE, MAE and R obtained from 

testing data are shown in Table 1. 

Table 1. MSE: Mean square error, MAE: Absolute mean error, R: Correlation coefficient 

Model MSE MAE R 

AR1         0,433        0,5288 0,837 

    

SVM         3,4932          1,630 0,718 

 

The best model is MSE, the MAE is the smallest, and the R is the biggest model. The AR1 model gave better 

results than the SVR model for MSE, MAE and R values. 

Conclusion  

In this study, Autoregressive (AR) model and support vector machines (SVMs) models were investigated in order to 

improve the methods to estimate the groundwater level.  The accuracy of the SVMs model in groundwater level 

estimation was also investigated, and the results were compared with the AR1 model. Comparisons revealed that the 

AR1 model had the best accuracy in the groundwater level.   
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