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Abstract. Msplit and MP  estimations are new methods of assessing the parameters of functional models of geodetic obser-

vations. The first method assumes that each observation can be assigned to either of some functional models which differ from 

each other in competitive parameters. While the latter method is based on the assumption that distributions of measurement 

errors differ from the normal one in asymmetry and excess kurtosis. The theoretical properties indicate that both methods are 

also robust against outliers. However, the sense of robustness is a little wider than in the case of M-estimation. In Msplit estima-

tion the outliers are treated as variables with competitive functional models (in relation to models of “good” observations) while 

robustness of MP  estimation depends on the mentioned parameters of probabilistic models of observations. This paper 

shows that on one hand robustness is an interesting property of the methods in question, but on the other hand it broadens 

possible application of such estimation methods.    
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Introduction  

The influence function and the respective weight function play a very important role in designing robust M-estimates. 

Huber’s or Hample’s functions (Huber 1981; Hampel et al. 1986) as wella s the Danish’ one (Kubik 1982) are the most 

popular functions which can be applied during adjustment of geodetic observations. Msplit(q) estimation is another de-

velopment of M-estimation and it was proposed by Wiśniewski (2009, 2010). The method’s main assumption is that 

the observation set is a mixture of observations with different location parameters. In the context of robustness, we can 

say that such a set is a mixture of “good” and outlying observations. Note that here we estimate the parameters of both 

such subsets. Msplit(q) estimation was applied as a robust method in some papers (e. g., Li et al. 2013; Janicka, Rapiński 

2013; Janowski, Rapiński 2013; Błaszczak-Bąk et al. 2015), and in the others it was indicated as an alternative to 

classical M-estimation (Yang et al. 2001; Ge et al. 2013; Amiri-Simkooei et al. 2016). Msplit(q) estimation has also 

several other applications, for example, in analysis of deformation of geodetic networks (Duchnowski and Wiśniewski 

2011, 2014, 2016; Zienkiewicz 2015; Zienkiewicz, Baryła 2015; Wiśniewski, Zienkiewicz 2016). 

Another new development of classical M-estimation is MP  estimation, which was proposed by Wiśniewski 

(2014). The method is based on the maximum likelihood method (ML) when the system of Pearson’s distributions is 

assumed as a general probabilistic model of measurement errors. MP  estimation allows us to consider some anoma-

lies of error distribution, namely asymmetry and excess kurtosis (in relation to the normal distribution). To find such 

anomalies one can apply, for example, the method proposed by Wiśniewski (1996). 

It is worth noting that robustness of both methods in question should rather be regarded as a “side effect”, and 

not the main reason for their development. However, the empirical analyses and applications show that both methods 

can be an interesting alternative for robust M-estimation, especially if we consider their high robustness against outliers 

and other properties which are specific for each of the methods.   

Qualitative robustness of M-estimators 

M-estimators of the parameters X  in the observation model y θ v AX v= + = + , θ AX= , are such X̂ , for which it 

holds 
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where: 
1

[ , , ]y
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n
y y= ⋯  – an observation vector, 

1
[ , , ]v

T

n
v v= ⋯  – a vector of random measurement errors, X – a 

parameter vector, A – a known matrix of coefficients, ai – ith row of the matrix A ( a X
i i
=θ ). According to the 
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classical M-estimation, the functions ( , ) ( )
i i i
y v=ρ θ ρ  are related to the ε – contaminated model (1 )F F G= − +

ε
ε ε , 

where ( ; )
i i

F F y= θ  is an acceptable distribution, namely distribution of good observations, and G are disturbing 

distributions (distributions of outliers). The coefficient 0;1∈〈 〉ε determines the share of F or G within the model F
ε

. Its 

interpretation is asymptotic breakdown point ∗
ε , which determines quantitative robustness of the estimate ˆ ˆ( )F=

ε
θ θ , 

namely the boundary share of outliers within the observation set for which the estimate does not break down. On the 

other hand qualitative robustness is related to sensitivity to gross errors. If the functions ρ  are differentiable, then 

the influence functions ′=ψ ρ as well as the weight functions /w v=ψ  can be determined (Hampel et al. 1986). 

The influence function is the basis for determination of the maximum sensitivity to gross error (e.g. Huber 1981) 

 *
max{ , },γ γ γ

∗ ∗

+ −
= −  (2) 

where inf ( )v
∗

−
=γ ψ  and sup ( )v

∗

+
=γ ψ  are right hand or left hand sensitivity, respectively. If the influence func-

tions are bounded and the weight ones are concave, then M-estimate is robust against outliers. But if ∗
=∞γ  and the 

weight function is convex then the estimate is weak. It means that it strongly depends on the outlying observations. In 

the case of the least squares method (LS), the influence function is unbounded but the weight function is constant for 

all ( , )v∈ −∞ ∞ . In such a case, M-estimates (including LSE) are neutral on outliers. Msplit estimation and its robust-

ness 

The basis for Msplit estimation is an assumption that the observation set is a mixture of several random variables which 

differ from each other in the parameters ( )i l
θ , 1, ,l q= … (Wiśniewski 2009, 2010). However, we do not know which 

parameter is proper for a particular observation i
y . Let us assume that we have good observations with the parameter 

(1)θ  and outlying observations with the parameter (2)θ . Thus each observation can be a good one or outlying one. 

Hence, the traditional functional model y AX v= +  is split into the models (1) (1)y AX v= +  and (2) (2)y AX v= +  , 

both of which are related to the same observation vector y. The parameter vectors of such models are competitive to 

each other. It is obvious that the outlying observation can have more than one cluster. Then one can assume the split 

models in the form ( ) ( )y AX v
l l

= + , 1, ,l q= … . 

Generally Msplit estimation was design for arbitrary q (Msplit(q) estimation). However, this paper focuses on Msplit(2) 

estimation, where Msplit(2) estimates of the competitive parameters, namely (1)X̂  and  (2)X̂ ,  satisfy the equation 
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where 2 (1) (2)( , ),= X XX  (1) (1)v̂ y AX= −  and (2) (2)ˆ .= −v y AX  In teh case of arbitrary q one can write 

2
1 ( )1( )
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= ∑ ∏ϕ X . Note that, if ( ):X X
l
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v v= , then 

2

1
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Considering the objective function of the optimization problem Eq. (3), we can determine the following influence 

functions (the influence functions for both competitive parameters)  

 

2 2
(1) (2) 2

(1) 2 (1) (2)
(1)

( ) 2 ;
v v

v v

v

ψ
∂

= =
∂

v  

2 2
(1) (2) 2

(2) 2 (2) (1)
(1)

( ) 2 ;
v v

v v

v

ψ
∂

= =
∂

v  2 (1) (2)( , ).v v=v    (4) 

Hence the weight functions have the respective forms: 
2

(1) 2 (2)( )w v=v  or 
2

(2) 2 (1)( )w v=v . Msplit(2) estimates, 

which solve the optimization problem of Eq. (3), also zero the influence functions of Eq. (4), which will be used in 

determination of the estimates in question.  

Sensitivity of Msplit(2) estimates are considered within the interval (2) (1)= −∆θ θ θ  for which we can write 

(1) (1)sup 0
∗

+
= >γ ψ , (1) (1)inf 0

∗

−
= =γ ψ , (2) (2)sup 0

∗

+
= =γ ψ , (2) (2)inf 0

∗

−
= <γ ψ . Thus, we obtain the following 

maximum sensitivities   

 (1) (1) (1) (1)max{ , } ;γ γ γ γ
∗ ∗ ∗ ∗

+ − +
= − =  (2) (2) (2) (2)max{ , } .γ γ γ γ

∗ ∗ ∗ ∗

+ − −
= − = −   (5) 

The sensitivities (1)
∗

γ  and (2)
∗

γ  are finite, hence Msplit(2) estimation is robust within the interval ∆θ . However, 

it is not robust outside that interval, thus it can break down if there are more than two observation clusters (in such a 
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case one should assume a different and appropriate number q). Note that if (1) (2)= =θ θ θ  ⇔  (1) (2)v v v= = ,

2 (1) (2)( , )v v v= =v , then 
3

(1) 2 (2) 2( ) ( ) ( ) 2v v= = =ψ ψ ψv v
2

(1) 2 (2) 2( ) ( ) ( ) 2w w w v v= = =v v , which are the influence 

and weight functions of LFP-method, respectively (Cellmer 2014). Since ,γ
∗

+
= +∞  ,γ

∗

−
= −∞  

max{ , }
∗ ∗ ∗

+ −
= − = ∞γ γ γ , and the weight function is convex, thus LFP method is a weak estimation (like all other 

methods with the objective function 2

1
( )X

qn
i iv== ∑ϕ ). 

MP  estimation and its robustness 

M-estimates, which minimize the objective function of Eq. (1), are solutions of the following equation 

 
1 1

   ( ) ( )  .
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Assuming that ( ) ln ( )v f v= −ρ , where f F ′=  is a probability density function (PDF), M-estimates are deter-

mined for the certain family of distributions ( ; )F y θ . In such a case ( ) ( ) ( ) / ( )v v f v f v′ ′= = −ψ ρ . The problem is to 

assume a family of distributions, which is general enough on one hand, but yields no numerical problems on the other. 

Generality of the model is related especially to anomalies of empirical distributions, which usually concern asymmetry 

of a distribution 3/2

1 3 2
/=β µ µ  and/or its kurtosis 2

2 4 2
/=β µ µ ; where k

µ  is kth central moment (note that for normal 

distributions 1
0=β , 2

3=β ). Such anomalies in geodetic measurements were pointed out in several papers (e. g., 

Wiśniewski 1996; Hu et al. 2001). If we want to consider such anomalies during the estimation process we should 

assume appropriate probabilistic models. In that context, the family of Pearson’s distributions seems especially inter-

esting. Fortunately, PDFs of Pearson’s distributions are solutions of the following differential equation (e.g., Elderton 

1953; Wiśniewski 2014) 

 0 2

1 22 2

0 1 2

( 3 )( )
( ) ( ; , ),

( ) ( ) ( )

c c vf v
v v
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where : 2

0 2 1
4 3c = −β β ,   1 1 2

( 3)c = +β β , 2

2 2 1
2 3 6c = − −β β  (s – a difference between the mode and the ex-

pected value). Note that such an equation defines also the influence function (with the opposite sign). M-estimation 

with such an influence function was determined by Wiśniewski (2014) and it was denoted as MP  estimation. 

The maximum sensitivity of MP  estimation can be described by the following expression 

 *

1 2 1 2
max{ , } max{ inf ( ; , ), sup ( ; , )}.v vγ γ γ ψ β β ψ β β∗ ∗

+ −
= − = −  (8) 

If 2
3>β  and 2

0c > , then ∗
<∞γ , and additionally the weight function /w v=ψ  is within the whole inter-

val ( , )−∞ ∞  a concave function with the maximum max ( ) (0)w v w= . Thus, MP  estimation is robust, and its ro-

bustness increases with growing distance between the kurtosis and the value of 2

1
3/ 2 3+β  (in the case of symmetric 

distributions with the growing kurtosis). If 2
3<β , then the weight function is convex, hence MP  estimation itself 

is a weak estimation. For 1
0=β  and 2

3=β , MP  estimation becomes LS method.  

Example of numerical analysis 

Qualitative robustness 

The basis for the empirical analysis is an observation set with the elementary functional model i i
v y= −θ , 

1, , ,i n= …  which is simulated by applying the Gaussian generator of the system MatLab. Wiśniewski (2014) showed 

that in the case of small samples, the empirical kurtosis and asymmetry might differ from the theoretical values for the 

normal distribution. For example, an observation set was generated under the assumption that 32n =  and 0=θ , 

and one obtained the following empirical values: the standard deviation 1.10=σ , the asymmetry 1
1.00=β  and the 

kurtosis 2
5.60.β =  One of the simulated observations was disturbed with the growing gross error. The results ob-

tained by applying LS method, M-estimation with the Huber influence function ( ) min{1, / | |}v v k v=ψ  (for 2.5k = ), 
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M
P  or Msplit(2) estimation are presented in Table 1. Fig. 1 shows the histograms of the observation set for 0,g =  

10,g =  20g =  or 40.g =  

Table 1. Comparison MP  and Msplit(2) estimates with LS and Huber’s estimates 

g 0 5 10 20 40 80 160 320 

ˆ
LSθ  0.28 0.43 0.59 0.90 1.52 2.77 5.27 10.27 

ˆ
H
θ  0.21 0.31 0.27 0.27 0.27 0.35 0.46 0.46 

θ̂P  –0.08 –0.02 –0.03 –0.04 –0.04 –0.05 –0.05 –0.05 

Msplit(2) 
(1)θ̂  –0.41 –0.30 0.10 0.17 0.24 0.27 0.29 0.30 

(2)
ˆ ĝ=θ  2.07 2.75 6.93 17.63 38.40 78.86 159.09 319.21 

 

For such an asymmetric set of observations we can draw the following conclusions. First of all, if 0,g =  then 

LS estimate and M estimate are close to each other ( ˆ 0.28
LS
θ = , ˆ 0.21

H
θ = ). MP  estimate, ˆ 0.08θ = −P

, is close to 

the theoretical value of 0θ =  (due to the fact that such an estimation considers the asymmetry of the set). Finally, 

Msplit(2) estiamtion reacted to positive asymmetry in the value of (1)
ˆ 0.41θ = −  which is on the left hand side from the 

mode. The second value (2)
ˆ 2.07θ =  results from the fact that the method “regarded” the right hand side tail as the 

outlying observations. The situation changes with the growing value of the gross error. Then, Msplit(2) estimates, namely 

(1)θ̂  and (2)θ̂ , identify two clusters of the observations in a better and better way. 

 

Fig. 1. Selected histograms for: 0g = , 10g = , 20g =  and 40g =  

Quantitative robustness 

Let us apply the observation set from the previous example to illustrate such kind of robustness in the case of Msplit(2)  

or MP estimation. Thus, let the set be disturbed by the growing number (from 1k =  to 32k = ) of gross errors of 

the same value 10g = . The parameter 0=θ  will be estimated by using Msplit(2)  or MP  estimation (assuming that 

1
1.00=β ). For the sake of comparison, the parameter will also be estimated by applying LS or Huber’s method. The 

results which are obtained for each of the methods are presented in Fig. 2. The breakdown points of M estimate as well 

as MP estimates are also indicated in that figure. As for Msplit(2) estimation, Fig. 2 shows the point of  “reversal”, 

namely the point in which the estimates swap places with each other. The Huber estimate breaks down at 15k =  (the 

empirical breakdown point ˆ 0.47
H

∗
=

θ
ε ). The empirical breakdown point of Msplit(2)  estimate is just the same, 
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split(2) 0.47
∗
=ε ; however, for 16k =  we can observe the reversal of the observation subsets, and the estimates (1)θ̂ ,  

(2)θ̂  swap places with each other. For 1 15k< <  the estimate (1)θ̂  describes the parameter 0=θ , while (2)θ̂  

identifies gross errors (the situation is the opposite for 16 28k≤ < ). Finally, MP estimate can withstand the biggest 

number of outliers, hence it has also the biggest breakdown point, namely ˆ 0.59
∗
=

θ
ε

P
.  

 

Fig. 2. Estimates ˆLSθ , ˆHθ , θ̂
P

 and  Msplit(2)  estimates (1)θ̂ , (2)θ̂   

depending on the growing number k of gross errors ( 10g = ) 

Conclusions 

The paper presents some interesting findings concerning robustness of the new methods of estimation, which can be 

applied in adjustment of geodetic measurements. However, if we consider Msplit or MP estimation, the meaning of ro-

bustness is a little bit different from the traditional one. Generally speaking, the outlying observations are not regarded as 

“bad” ones. In Msplit estimation they are treated as realizations of a “strange” random variable (or variables) which parameters 

(like for example the expected value) differs from the parameters of “appropriate” variables. Hence, we should consider two 

(or more) functional models with the competitive parameter vectors. Estimating such two vectors, we can obtain information 

about the real parameters but also about competitive (strange) ones, which sometimes might be interesting and advisable (for 

example in deformation analyses). On the other hand, robustness of MP estimation depends on the assumed (or estimated) 

asymmetry and kurtosis of error distribution. For certain types of distributions such a method is robust against outlying 

observations. If we assume proper values of the steering parameters then the method can accept a wider (or asymmetric) 

interval for measurement errors, hence some observations, which traditionally would be regarded as outlying ones, do not 

disturb the estimation results. It is worth noting that the breakdown point of MP estimation can achieve values bigger than 

0.5, thus it should be regarded as a subjective breakdown point (see, for example, Wyszkowska, Duchnowski 2017). Such 

breakdown points are of course related to the prior information about distribution of measurement errors, which in fact is the 

theoretical basis of MP estimation. In summing up the numerical examples presented in this paper show that both methods 

in question are good and worth considering alternatives for traditional robust M-estimates.   
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