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Abstract. Air pollution is an important issue worldwide. Solid components in air (particulate matter, PM) originate 

from a variety of natural or anthropogenic sources and have different morphological, physical, and chemical properties. 

Their presence in the air also depends on meteorological conditions, such as humidity, rainfall, and wind speed. PM 

pollution has adverse effects on environment and human health. Therefore, it is very important to address sources and 

processes involved in PM generation. Among the existing sources, a special attention must be paid to PM emissions 

from road traffic, i.e., exhaust sources (e.g., fuel combustion) and non-exhaust sources (e.g., road, tyre, brakes). These 

traffic-related sources contribute to PM concentrations in cities, and this calls for research into new possible systems 

and/or mitigation measures. In light of the facts above, the objectives of this study are 1) To evaluate the contribution 

to PM emission from traffic-related sources. 2) To evaluate existing mitigation measures and to identify new ones to 

reduce PM production. First results show that: 1) Non-exhaust sources have a different role in PM generation and they 

differently affect PM10, PM2.5, and PM0.1. 2) Even if emissions-related regulations have led to reductions in exhaust 

emissions from road traffic, other mitigation measures could reduce the non-exhaust part of emissions (e.g., brakes wear, 

road wear, and tyre wear). 3) New technologies could be developed to reduce PM from non-exhaust sources. 

Keywords: particulate matter, non-exhaust sources, tyre wear, road wear, brake wear, mitigation measures.   
 

Introduction  

Based on pollution source, particulate matter (PM) is made up of very heterogeneous compounds in terms of chemical 

composition, solid or liquid state, and size. PM classification is usually based on the aerodynamic diameter (the one 

that appears as a subscript). This latter is the diameter of a spherical particle with a density of 1 g/cm3 with the same 

settling velocity: 1) Total Suspended Particles (TSP) including all particles, of whatever size lower than 35 µm 

(Heinrich & Slama, 2007); 2) PM10 (less than 10 µm). 3) PM2.5 (<2.5 µm in diameter). 4) PM1.0 (<1 µm in diameter). 

5) Coarse particles (particles which are from 2.5 to 10). 6) Fine particles (particles less than 2.5 in diameter), that 

include PM0.1. 7) Ultra-fine particles (<0.1 µm, i.e., PM0.1). Furthermore, PM can be classified as primary or secondary 

particles: 1) Primary particles (i.e., fine, PM2.5 and ultrafine particles, PM0.1) are directly released into the atmosphere 

by a large number of human or natural sources (e.g., combustion processes) (Reddington et al., 2011). 2) Secondary 

particles (including coarse particles with diameters greater than 2.5 μm, PM10 and TSP) are generated by mechanical 

or chemical reactions during the atmospheric oxidation of emitted precursor gases (e.g., sulfur dioxide, nitrogen oxides, 

ammonia, and volatile organic compounds). In this process, the saturation vapor pressure of the organic and inorganic 

gases becomes lower thus allowing them to transfer into particle phase by condensation and nucleation (Alanen et al., 

2017; Reddington et al., 2011). Table 1 below shows a schematic PM classification.  

Table 1. Particulate Matter Classification 

Category PM Fraction Particle Size Acronym Source 

Primary 

particles 

Ultra-fine <0.1 μm PM0.1 Volcanoes, forest fires, sea spray, and windborne dust, 

and anthropogenic sources (vehicles, engines or power 

plants, and biogenic sources) (Reddington et al., 2011) Fine <2.5 μm PM2.5 

Secondary 

particles 

Coarse 
<10 μm PM10 Homogeneous nucleation (gas-to-particle conversion) 

and condensation of both natural and anthropogenic 

gaseous precursors. Also traffic and other anthropogenic 

sources are contributors to secondary aerosol formation.  

(Alanen et al., 2017; Reddington et al., 2011) 

>2.5 μm & <10 μm PM2.5-10 

Total suspended <35 μm TSP 
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Note that anthropogenic activities have a negative impact on PM pollution. Importantly, in addition to industrial 

processes, farming, building operations, combustion of fossil fuels, also road traffic significantly contributes. Based 

on the above, the objectives of the study presented in this paper are to 1) Analyze the emissions of particulate matter 

(i.e. PM10, PM2.5, and PM0.1) from traffic-related sources. 2) Evaluate existing mitigation measures and their 

effectiveness. 3) Provide a basis for a better understanding of traffic-related emissions in order to guide future research 

into new effective technologies and measures. The remaining part of this paper is organised as follows. Next section 

deals with the analysis of traffic-related PMs. Afterwards mitigations measures are discussed. Finally, Conclusions are 

drawn and references are listed. 

1. Analysis of traffic-related PMs 

In terms of PM thresholds and limits, note that the EU Directive 2008/50/EC (European Parliament, 2008), as well as 

the guidelines of the World Health Organization (WHO, 2006) set PM concentration thresholds (cf. Table 2). 

According to the EU Directive 2008/50/EC, the 24-hour average PM10 should not exceed 35 µg/m3 more than 35 times 

in a calendar year. WHO guideline values are generally stricter than the EU standards. In the U.S.A., the National 

Ambient Air Quality Standards (NAAQS) (Buchoolz, 2014) serves as a national public health and environment 

protection program. NAAQS refers to several contaminants (e.g., carbon monoxide CO, nitrogen oxides NO2, ozone 

O3, sulfur dioxide SO2 and lead Pb). For PM2.5, NAAQS provides a “primary standard” (for the protection of public 

health) and a “secondary standard” (for the protection of public welfare). PM2.5 limits are 12 and 15 µg/m3, respectively. 

Table 2. Different sources contribution to PM2.5 and PM10 

Country 

Target Limit 

Reference PM10 (µg/m3) PM2.5 (µg/m3) 

24-H ANNUAL 24-H ANNUAL 

EU 50  40 / 25 Directive 2008/50/EC  

EU 50  20 25 10 WHO Air-Quality Guidelines 

Norway 30 20 15 8 National Air-Quality Guidelines 

USA 150 / 35 12–15 NAAQS 

Canada   30  Canadian Council of ministries of Environment 

Australia 50  25 8 Australia Government 

Japan 100  35 15 Government of Japan 

 

Traffic-related PMs can be distinguished into 1) Exhaust traffic-related particles, ES, which are emitted as a result 

of incomplete fuel combustion and lubricant volatilization during the combustion procedure. 2) Non-exhaust traffic-

related particles, NES, which are either generated from non-exhaust traffic related sources such as brake, tyre, clutch 

and road surface wear or already exist in the environment as deposited material and become resuspended due to traffic 

induced turbulence (Grigoratos & Martini, 2014).  

Based on the studies conducted in 51 countries around the world, Karagulian et al. (2015) assessed how the 

different sources identified contribute to air pollution (cf. Table 3). Note that, in decreasing order: 1) Unspecific 

anthropogenic sources are approximately 28–36%. 2) The contribution of natural dust and sea salt is about 23–26%. 

3) Traffic (from exhaust, ES, and non-exhaust sources, NES) is a major contributor (about 23–25%). 4) Domestic fuel 

burning (e.g., wood, coal and gas fuel for cooking / heating) accounts for about 20–24%. 5) The share from industrial 

activities is about 17–19%. For traffic, note that in several contexts it may result as the main source of PM (Karagulian 

et al., 2015). This is particularly evident in urban areas where vehicle emissions (e.g. carbon dioxide (CO2), 

hydrocarbons (HCs), nitrogen oxides (NOx) and PM) are constantly increasing.  

Table 3. Different sources contribution to PM2.5 and PM10 

Sources 

Traffic 

Industry 
Domestic Fuel  

Burning 

Natural  

Sources 

Unspecified Sources  

(of Human Origin) ES 
NES 

RW BW TW 

PM10 (%) 8–38 6–29 3–45 3–44 12–44 

PM2.5 (%) 12–37 4–34 6–34 5–52 9–62 

Note: ES = Exhaust Sources; NES = Non Exhaust Sources; RW = Road Wear; BW = Brake Wear; TW = Tyre Wear. 
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Based on literature results (Amato et al., 2014a; Denby et al., 2013; Hedberg et al., 2006; Kim & Lee, 2018; 

Kwak et al., 2013; Panko et al., 2019, 2013; Schauer et al., 2002; Sjödin et al., 2010; Srimuruganandam & Shiva 

Nagendra, 2012a, 2012b; Wåhlin et al., 2006; Weinbruch et al., 2014). Table 4 reports Contributions to Particulate 

Matter (PM10 and PM2.5) from exhaust and non-exhaust sources. 

Table 4. Results for Exhaust and Non-Exhaust (traffic related) Contributions to Particulate Matter (PM10 and PM2.5) 

Source  

Category 
Source 

PM concentration PM 

size range 
Reference 

(µg/m3) % 

ES/NES 

ES 2.4–4.4 10.3–19.2 

PM2.5 

(Sjödin et al., 2010) 

RW 11.1–13 48.8–57 

BW 5.8 25.5 

ES 3.8–25.1 13.1–43.6 

PM10 
RW 4–42.8 7–80.4 

BW 0.02–42 0.1–7.2 

TW 0.02–5.6 0.06–10.2 

ES/NES 

ES 4.3 55 

PM2.5 

(Wåhlin et al., 2006) 

RW 2.2 28.4 

BW 0.72 9.3 

ES 1.6 13.35 

PM10 RW 5.8 48.3 

BW 0.1 0.8 

ES/NES 

ES 2.4–3.3 10–20.1 PM10 

(Denby et al., 2013) 
RW 7.8–23.8 56.2–78 

BW 0.9–1.7 5.5–5.9 

TW 0.8–1.9 5.5–9.3 

ES/NES 
ES 2.76 27 PM10 

(Weinbruch et al., 2014) 
BW+TW 1.6 15 

ES/NES 

ES 3.8 6 
PM2.5 

(Srimuruganandam & Shiva Nagendra, 2012a) 
BW+TW 3.4 5.4 

ES 13.1 15.8 
PM10 

BW+TW 3.4 4.1 

ES/NES 

ES 23.5 57.7 
PM2.5 

(Srimuruganandam & Shiva Nagendra, 2012b) 
BW 0.09 0.14 

ES 31.9 58.5 
PM10 

BW 3.4 8 

ES/NES 

ES 6.5 18 
PM2.5 

(Amato et al., 2014a) 
TW 6.6 18 

ES 8.8 20 
PM10 

TW 3.4 8 

NES BW 0.6 14 PM2.5 (Hedberg et al., 2006) 

ES/NES 
ES 11.9–25.9 30.1–37.4 PM2.5 

(Schauer et al., 2002) 
TW 0.4–2 1–3.3 

NES 
TW+RW 0.004–0.29 0.1–0.68 PM2.5 

(Panko et al., 2019, 2013) 
TW+RW 0.05–1.34 0.14–2.8 PM10 

NES 
TW 13.8–28.7 4–7 PM2.5 

(Kwak et al., 2013) 
TW 20.8–37.1 3–4 PM10 

NES 
TW 2–7 0.04–0.12 PM2.5 

(Kim & Lee, 2018) 
TW 13–22.2 0.12–0.40 PM10 

Note: ES = Exhaust Source; NES = Non Exhaust Source; RW = Road Wear; BW = Brake Wear; TW = Tire Wear. 
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On average, for exhaust sources (ES), PM10 accounts for about 10 µg/m3, while for non-exhaust sources (NES), 

PM10 accounts for about 12 µg/m3. Furthermore, on average, for ES, PM2.5 accounts for about 11 µg/m3, while, for 

NES, PM2.5 accounts for about 19 µg/m3. Note that, in Table 4, when PM2.5>PM10 data are not consistent and refer to 

different authors/studies. Figure 1 shows 1) How PM2.5 and PM10 relate. 2) Typical relationships among NES 

components (Sjödin et al., 2010). 

 

 

Figure 1. PM2.5 and PM10 for ES and NES 

The contact between tyre and road surface causes shear and heat in the tyre (Jan Kole et al., 2017), with generation 

of wear particles. The interaction of tyres and pavement alters both the chemical composition and characteristics of the 

particles generated compared to the original tyre tread due to heat and friction, as well as the incorporation of material 

from the road surface (Grigoratos & Martini, 2014; Panko et al., 2013). The amount and size of the particles released 

depends on climate (temperature), composition and structure of the tyre, road surface, driving speed and style, and the 

nature of the contact (e.g., rolling versus slipping). Kole et al. (2017) studied the tear and wear process and they 

summarised the amount released into the environment in different countries. Generally, two different approaches are 

used to estimate the amount of wear and tear from tyres: the first one uses emission factors per vehicle-km multiplied 

by the total mileage, and the second one uses the number of tyres multiplied by the weight loss of these tyres during 

use. Data collected have been grouped into 4 categories and reported in Table 5.  

Table 5. The amount of car tyres wear and tear for different States (Jan Kole et al., 2017) 

Note: Category 1 – Moped, Motorcycle, and Motorised 2 – and 3 – wheelers; Category 2 – passenger car, light vehicle; Category 
3 – van, special vehicle light, commercial car, lorry<7.5 t, light vehicle, and normal vehicle; Category 4 – articulated-lorry, lorry, 
truck, bus, special vehicle heavy, heavy transport, lorry>7.5 t, trailer, and heavy lorry; *data refer to wear and tear are reported in 
cm3/tyre. 

Nation 

Wear and Tear in (mg/Km) Total Wear and 

Tear emissions 

(Tonnes/years) 

Total emissions 

per Capita/year 

(kg) Category 1 Category 2 Category 3 Category 44 

The Netherlands 9–60 85–132 102–159 267–850 8834 0.52 

Norway / 100–132 / 712 7884 1.5 

Sweden / 50 / 700 13238 1.3 

Denmark / 100–132 204 712 6721 1.2 

Germany 22.5–45 80–90 180 700–1200 92594 1.1 

United 

Kingdom 
/ / / / 63000 0.98 

Italy / / / / 50000 0.81 

Japan 1136(2)* 1780(4)* 2880(4)* 
5484(10)–

5973(14)* 
239762 1.9 

China 7 132 204 1068 756240 0.55 

India 7 132 204 1068 292674 0.23 

Australia / / / / 20000 0.87 

USA 7 132 204 1068 1524740 4.7 

Brasil 7 132 204 1068 294011 1.4 
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It is possible to observe as the amount of tyre wear and tear ranges from 9 mg/km, for two-wheel vehicles like 

motorcycles, to 1200 mg/km for the heaviest vehicles (i.e., lorries). Moreover, the estimated per capita emission ranges 

from 0.23 to 4.7 kg/year, with a global average of 0.81 kg/year. In particular, India has the lowest wear and tear 

estimate, i.e., 0.23 kg/capita/year, while the USA has the highest, i.e., 4.7 kg/capita/year. This difference can be 

explained by the fact that the USA has 0.82 cars per capita, while in India there are 0.13 cars per capita. The wear 

factor (defined as the total amount of material lost per kilometer) depends on several parameters such as: a) tyre 

characteristics; b) vehicle characteristics; c) road surface characteristics; d) vehicle operation. Many studies have been 

carried out to determine the amount of Particulate Matter (PM) emitted by non-exhaust source (e.g., tyres, brakes, and 

resuspension). Table 6 shows the PM10 and PM2.5 emissions caused by tyre wear process.  

Table 6. PM10 and PM2.5 emission factor and concentration related to tyre wear 

References 

PM concentration 

(µg/m3) References 

PM emission factor 

(mg/vkm) 

PM10 PM2.5 PM10 PM2.5 

(Sjödin et al., 2010) 0.017–0.799 / (Sjödin et al., 2010) 0.002–0.044  / 

(Panko et al., 2019) 0.04–2.24 0.002–15  (Simons, 2013) 0.004 0.003  

(Panko et al., 2013) 0.08–0.67  / (ten Broeke et al., 2008) 1.2–30  0.25–6  

(Kwak et al., 2013) 20.1–62.5  17.2–52.6  
(EPA Environmental Protection 

Agency, 2014) 
0.44–3.23 3.04–21.69 

(Gustafsson & Eriksson, 

2015) 
0.004–0.011  0.0036–0.012  (EMP/EEA, 2016) 6.4–59 3.4–16 

(Kupiainen et al., 2005) 750  80  (Timmers & Achten, 2016) 6.1–7.2  2.9–3.7  

Note: mg/vkm = mgKm–1vehicle-1. 

 

Brake linings consist of five different materials (Grigoratos & Martini, 2014, 2015): 20–40% (by mass) of binders 

(e.g., modified phenol-formaldehyde resins), 6–35% of fibres (metallic, mineral, ceramic or organic), 15–70% of fillers 

(e.g. inorganic compounds as barite (BaSO4) or calcite (CaCO3), silicates, and metal powders, 5–29% of frictional 

additives or lubricants (e.g., graphite, metallic particles, carbon black, and antimony trisulphide) and 10% of abrasives 

(e.g. aluminium oxide, iron oxides, quartz and zircon). Brake lining materials have a chemical composition with a high 

content of metals such as Fe (up to 60% by weight), Cu, Zn, K, Ti and Pb (up to 12% by weight) and other metals such 

as Ba, Mg, Mn, Ni, Sn, Cd, Cr at concentrations below 0.1% (Penkała et al., 2018; Thorpe & Harrison, 2008). 35–50% 

of the brake wear debris becomes airborne particulate matter (PM) while the remaining particles are deposited on road 

surfaces or are attracted to other parts of the vehicle (Grigoratos et al., 2018; Hagino et al., 2016). The chemical and 

physical composition of the brake wear particles is affected by vehicle speed, driving behaviour, vehicle maintenance, 

ambient conditions and brake characteristics (Kwak et al., 2013). On-road measurements and laboratory measurements 

(e.g., brake dynamometer test) can be used to characterize emissions from brake wear. Based on a literary survey, 

Grigoratos and Martini (Grigoratos & Martini, 2015) reported the following emission factors (EFs) for brake wear: 

1) 2–8.8 mg km–1veh–1 for PM10. 2) 0–15 mg km–1veh–1 for PM2.5. 3) 1.2–3.1 mg km–1veh–1 for PM0.1, where mg stands 

for milligrams. Road asphalt consists of a mixture of various elements (Gustafsson, 2018) 1) Mineral aggregates 

containing elements such as Si, Ca, K, Fe, and Al. 2) Bitumen with many compounds such as aliphatic and aromatic 

hydrocarbons. 3) Modifiers such as glass fillers, coal fly ash, and rubber tyres. The wearing of road surfaces depends 

on properties of asphalt, type of vehicle, and road surface conditions (Denier van der Gon et al., 2013). This affects the 

life and cycle costs of pavement and tire (Praticò et al., 2010), pavement properties, and acoustic performance. (Praticò, 

2001, 2014). Different tracers such as asphaltenes and maltenes, metals (including vanadium, Ni, Fe, Mg and Ca) or 

polycyclic aromatic hydrocarbons (PAHs) can be used for road surface wear, but it is difficult to distinguish the specific 

contribution of road wear and road dust (Thorpe & Harrison, 2008). Apart from increasing with speed (Kwak et al., 

2013), the increase in road wear particles depends on the type of tyre. To this end, it has been estimated that PM10 is 

100 times higher for studded tyres than for standard tyres (Sjödin et al., 2010).  

2. Measures for PM mitigation 

Figure 2 and Table 7 show the main existing mitigation measures. 
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Figure 2. Mitigation measures 

Table 7. Mitigation measures 

Source Mitigation Measures 

Pavement  

Improvement of materials and maintenance of road surfaces. Mineralogical nature of aggregates and bitumen. 

Type of pavement (e.g., porous asphalt concretes). Improving wear properties of materials. TiO2-like treatments. 

Road cleaning/Road maintenance. Flushing and washing. Vacuum sweeping (Monks et al., 2013). Binding dust to 

road surface (dust binding, moistening) (Amato et al., 2014a, 2014b). Removing/immobilizing dust from road surface 

( Amato et al., 2014a, 2014b). Removing resuspended PM using dust suppressants (Monks et al., 2013). Storage and 

handling of dusty materials (AIRUSE Project, 2016). 

Vehicle  

Reducing emission at the vehicle level (Gwilliam et al., 2004). Inspection and maintenance. Fuel quality; Alternative 

fuels. Vehicle technology. Making technical instruments effective (successful introduction of new vehicles, fuels, and 

emission control technologies). Retrofit (Yan et al., 2014) (e.g., Diesel particle filters (DPF) and diesel oxidation 

catalysts (DOC) are two examples of retrofit technologies).Scrappage (Yan et al., 2014) (refers to the replacement of 

old or high-emitting vehicles with newer ones that emit less pollution, before their owners would otherwise retire 

them from use). 

Brake  

Reducing the formation of brake-source particles. Improving/optimising brake-pad friction material (e.g., Non-

Asbestos Organic (NAO) pad material (Perricone et al., 2018)).Using carbon ceramic disc to replace cast iron disc 

(Wakeling et al., 2017). Regenerative brakes and brake-by-wire (Wakeling et al., 2017).Thermal disc treatment 

(Perricone et al., 2018). 

Trapping particles. Using a capture technique. Vacuum cleaner type device (Chłopek et al., 2013). Brake Pad Waste 

Collection System (BPWCS) (Fieldhouse & Gelb, 2016). 

Tyre  

Improvement of the composition and structure of the tyres (Verschoor et al., 2016). Wear-resistant tyres through 

changed composition and construction methods (Tyres with silica used as filler are, for example, less susceptible to 

wear than tyres with black carbon). Production of more resistant tyres to degradation (aging) from UV, moisture and 

oxygen. 

Potential measures against emissions and dispersion of tyre abrasion (Verschoor & de Valk, 2018). Legal 

threshold value for tyre abrasion. Tyre label with tyre abrasion indicator. Prohibiting the use of winter tyres in 

summer. Tyre Pressure Monitoring System in cars. Including wheel alignment in periodic vehicle inspections. 

Kilometre price (Introduction of a kilometre tax). 

Traffic  

Transport system improvement (Gwilliam et al., 2004). Modal-based strategies/Influencing modal choice. 

Improving public transportation. Cycling and pedestrian lanes. Car-sharing. Electric, Hybrids and Gas Vehicles. 

Traffic management. Traffic management. Lowering number of cars in the urban areas. Lowering traffic speed. Low 

emission zones (LEZ). Urban road tolls (Guevara, 2016). Key Access Regulation Schemes (Key-ARS) (Guevara, 

2016). 

Fiscal policies. Polluting vehicle and fuel taxation. 

Built-

environment 
Offices, Farms, industries, and plants. 

Other  

SUNSPACE (SUstaiNable materials Synthesized from by-Products and Alginates for Clean air and better 

Environment) (Zanoletti et al., 2018). Pollution Absorptive Billboard (Lima, Perù). Smog Free Tower in Beijing, 

China (ionisation technology) (Khodadad & Sanei, 2017). Air cleaning buildings (using TiO2). 

Conclusions  

Traffic-related sources account for 8–38% of PM10. On average, for exhaust sources (ES), PM10 accounts for about 

10 µg/m3 and PM2.5 accounts for about 11 µg/m3. In addition, for non-exhaust sources (NES), PM10 accounts for about 

12 µg/m3, and PM2.5 accounts for about 19 µg/m3. Furthermore, ES are often lower than NES but the opposite may 

happen. Even if more studies and measurements are needed, road wear usually outranks brake wear and tyre wear, 

with PM concentrations up to 13 µg/m3 and 42.8 µg/m3 for PM2.5 and PM10, respectively. Many mitigation measures 

can be adopted to reduce PM emissions and they can refer to vehicles, pavements, and other emission sources. A 
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holistic approach to the design of pavements is required, by considering not only NES but also other properties (e.g., 

skid resistance and drainability). This study interacts with the project LIFE18 ENV/IT/000201 (LIFE E-VIA), where 

tyre-pavement interaction for non-exhaust sources emerges as a key factor. 
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